Pepper_deepvariant#

Introduction#

PEPPER is a genome inference module based on recurrent neural networks that enables long-read variant calling and nanopore assembly polishing in the PEPPER-Margin-DeepVariant pipeline.

Versions#

  • r0.8

  • r0.8-gpu

Commands#

  • call_variants

  • freeze_graph

  • make_examples

  • model_eval

  • model_train

  • multisample_make_examples

  • pepper

  • pepper_train

  • pepper_variant

  • pepper_variant_train

  • postprocess_variants

  • run_deepvariant

  • run_deepvariant.py

  • run_pepper_margin_deepvariant

  • run-prereq.sh

  • runtime_by_region_vis

  • settings.sh

  • show_examples

  • vcf_stats_report

Example job#

Adjust slurm options based on job requirements (slurm cheat sheet):

#!/bin/bash
#SBATCH -p partitionName  # batch, gpu, preempt, mpi or your group's own partition
#SBATCH -t 1:00:00  # Runtime limit (D-HH:MM:SS)
#SBATCH -N 1   # Number of nodes
#SBATCH -n 1   # Number of tasks per node
#SBATCH -c 4   # Number of CPU cores per task
#SBATCH --mem=8G       # Memory required per node
#SBATCH --job-name=pepper_deepvariant  # Job name
#SBATCH --mail-type=FAIL,BEGIN,END     # Send an email when job fails, begins, and finishes
#SBATCH --mail-user=your.email@tufts.edu       # Email address for notifications
#SBATCH --error=%x-%J-%u.err   # Standard error file: <job_name>-<job_id>-<username>.err
#SBATCH --output=%x-%J-%u.out  # Standard output file: <job_name>-<job_id>-<username>.out

module purge   ### Optional, but highly recommended.
module load pepper_deepvariant/XXXX    ### Latest version is recommended.