Pepper_deepvariant#
Introduction#
PEPPER is a genome inference module based on recurrent neural networks that enables long-read variant calling and nanopore assembly polishing in the PEPPER-Margin-DeepVariant pipeline.
Versions#
r0.8
r0.8-gpu
Commands#
call_variants
freeze_graph
make_examples
model_eval
model_train
multisample_make_examples
pepper
pepper_train
pepper_variant
pepper_variant_train
postprocess_variants
run_deepvariant
run_deepvariant.py
run_pepper_margin_deepvariant
run-prereq.sh
runtime_by_region_vis
settings.sh
show_examples
vcf_stats_report
Example job#
Adjust slurm options based on job requirements (slurm cheat sheet):
#!/bin/bash
#SBATCH -p partitionName # batch, gpu, preempt, mpi or your group's own partition
#SBATCH -t 1:00:00 # Runtime limit (D-HH:MM:SS)
#SBATCH -N 1 # Number of nodes
#SBATCH -n 1 # Number of tasks per node
#SBATCH -c 4 # Number of CPU cores per task
#SBATCH --mem=8G # Memory required per node
#SBATCH --job-name=pepper_deepvariant # Job name
#SBATCH --mail-type=FAIL,BEGIN,END # Send an email when job fails, begins, and finishes
#SBATCH --mail-user=your.email@tufts.edu # Email address for notifications
#SBATCH --error=%x-%J-%u.err # Standard error file: <job_name>-<job_id>-<username>.err
#SBATCH --output=%x-%J-%u.out # Standard output file: <job_name>-<job_id>-<username>.out
module purge ### Optional, but highly recommended.
module load pepper_deepvariant/XXXX ### Latest version is recommended.