
TUFTS
DATALAB

Getting started with
GitHub & GitHub
Desktop

SHIRLEY LI, PHD
BIOINFORMATION

TUFTS TECHNOLOGY SERVICES
(SOME ORIGINAL CONTENT BY UKU-KASPAR

UUSTALU AND KYLE MONAHAN)
2

DATALAB datalab.tufts.edu

Content developed by

3

https://it.tufts.edu/research-technology-team

https://it.tufts.edu/research-technology-team

DATALAB datalab.tufts.edu

Overview
1. Data storage vs. GitHub Repositories
2. Git & Github & Version Control Basics
3. Navigating GitHub Desktop
4. Resolving Merge Conflicts
5. Understanding Branch Workflow
6. Best Practices for GitHub Usage

4

1. Data Storage vs. GitHub
Repo

5

DATALAB datalab.tufts.edu

Local folder
• A local folder resides on your computer's hard drive

or an attached storage device.

• No version control

• Cannot collaborate

6

DATALAB datalab.tufts.edu

Cloud folder (e.g., Dropbox and Box)

• Stored on servers accessible over the internet, allowing
files to be accessed from multiple devices and locations.

• Basic version history is available (snapshot)
• Collaboration
• Synchronization: Files stored in cloud folders can be

synchronized across all devices linked to the same cloud
account. Changes made in one device will automatically
update across all devices, ensuring consistency.

7

DATALAB datalab.tufts.edu

A local copy of a cloud-based
storage
• The files stored in a cloud-based storage service

(like Box, Dropbox, Google Drive, OneDrive, etc.) are
also downloaded and stored on your own
computer's hard drive or another storage device.

8

DATALAB datalab.tufts.edu

How changes are tracked
• In a shared folder, who ever made the last changes

will be saved to cloud, and synced to all local copies.

9

DATALAB datalab.tufts.edu

Conflicts in Cloud Folder
• Conflicts in a cloud folder can occur when multiple users

edit the same file at the same time and the system is
unable to reconcile the changes automatically.

• Both versions will be saved. We need manually review
conflict files.

• Best Practices: Coordinate with team members, agree on
who will edit what and when.

10

DATALAB datalab.tufts.edu

Cloud storage

Local copy

You Collaborator

No Conflict
1 2

1 2 1 2

11

DATALAB datalab.tufts.edu

Cloud storage

Local copy

You Collaborator

No Conflict
1 2

1 2 1 2

12

DATALAB datalab.tufts.edu

Cloud storage

Local copy

You Collaborator

No Conflict
1 2

1 2 1 2

13

DATALAB datalab.tufts.edu

Cloud storage

Local copy

You Collaborator

No Conflict
1 2

1 2 1 2

14

DATALAB datalab.tufts.edu

Cloud storage

Local copy

You Collaborator

With Conflict
1 2

1 2 1 2

15

DATALAB datalab.tufts.edu

Cloud storage

Local copy

You Collaborator

With Conflict1 (conflicted copy)

1 2 1 2

1 2

16

DATALAB datalab.tufts.edu

Cloud storage

Local copy

You Collaborator

With Conflict1 (conflicted copy)

1 (conflicted copy) 1 (conflicted copy)1 2 1 2

1 2

17

DATALAB datalab.tufts.edu

2. Git & GitHub & Version
Control Basics

18

DATALAB datalab.tufts.edu

Final.doc

19

DATALAB datalab.tufts.edu

Version Control
• Version control is a record of who make changes to

what, and when they did it

• We can always undo

• Easier for collaboration without overwriting

• A key skill in code&data management!

20

DATALAB datalab.tufts.edu

What is Git?
• A version control system.
• Manage source code changes.
• Two key features: Commit and Branches.
• With Git, you can easily roll back to older code snapshots

(commits) or develop new features without breaking
production code.

21

DATALAB datalab.tufts.edu

What is GitHub
• A cloud Git repository & services provider.
• Code management & collaborative development.
• It can handle all the versioning and allows multiple people

to collaborate on the same project.
• Repositories support version control capabilities through

Git.
• Graphical User Interface, beginner friendly

22

DATALAB datalab.tufts.edu

.git hidden folder
• .git folder is created after you initiate a repository

• .git contains all information required for version
control.

23

.git

GitHub

24

a central hub for stored code, allowing
team members to push and pull changes

25

https://github.com/tytell/CStart

An example repository

https://github.com/tytell/CStart

.git

git clone

.git

remote

local

26

.git

.git

remote

local

Make changes locally 27

.git

.git

git commit

remote

local

28

.git

.git

git push

remote

local

29

.git

.git

Git fetch & Pull

local
(collaborator)

remote

30

DATALAB datalab.tufts.edu

Git Commit
• A core function in the Git version control system that saves a

snapshot of the project’s staged changes, creating a
"commit" object in the repository history.

• Each commit includes:
• Snapshot of Changes
• Unique Identifier
• Author Information
• Timestamp
• Commit Message

31

DATALAB datalab.tufts.edu

Commit 1:
Create file.txt

Commit 2:
Delete file.txt

• How to recover file.txt?
Commit 1:

Create file.txt
Commit 2:

Delete file.txt
Commit 3:

Revert “Delete file.txt”

A new commit

32

Revert to old version

DATALAB datalab.tufts.edu

Confusions
• Pull is a command for updating the local repository to

match a remote repository.
• Push is a command for updating a remote repository

with changes made locally.
• Pull Request is a feature allows you to tell others about

changes you've pushed to a branch in a repository.
(Usage: Merge other branches to main branch;
Contribute to open source project.)

33

DATALAB datalab.tufts.edu

Git vs. GitHub Desktop
• Git: a command line tool

• Git provides more detailed control over all aspects of
version control, suitable for complex development
workflows.

• GitHub Desktop: a graphical user interface (GUI)
• GitHub Desktop focuses on simplifying common Git

operations, which may limit some advanced functions.

34

3. Navigating GitHub
Desktop

35

Hands-on demo: https://go.tufts.edu/github2404

https://go.tufts.edu/github2404

4. Resolving Merge
Conflicts

36

How conflicts are generated

37

DATALAB datalab.tufts.edu

Conflicts
• In services like Box or Dropbox, conflicts arise when

two team members simultaneously make changes
to the same file.

• Similarly, in a GitHub repository, conflicts occur
when two team members modify the same part of a
file concurrently.

38

.git

.git

remote

local

39

.git

.git

remote

local

You make changes locally

Your collaborator make changes remotely
or they make changes on their local copy
and commit and push back to GitHub.

40

.git

.git

remote

local

Commit and push will
cause conflicts 41

Let’s address conflicts using
GitHub Desktop

42

Hands-on demo: https://go.tufts.edu/github2404

https://go.tufts.edu/github2404

5. Understanding Branch
Workflow

43

DATALAB datalab.tufts.edu

Introduction to Branching
• Definition: A branch in version control is a separate line of

development that diverges from the main line (often called "master"
or "main").

• Purpose: Allows developers to work simultaneously on different
features or fixes without disturbing the stable version of the project.

• Isolation: Changes in one branch don't affect others, making it safer
to experiment.

• Collaboration: Multiple people can work on different features
simultaneously without interference.

44

Main

45

DATALAB datalab.tufts.edu

Branch Workflow Steps
1. Create a Branch

2. Add Commits

3. Open a Pull Request

4. Review and Merge

5. Delete the Branch

46

DATALAB datalab.tufts.edu

Best Practices
• Keep Branches Short-Lived

• Regularly Sync with Main Branch

47

48

How conflicts are generated
when merging branches

49

Main branch

Test branch

50

Main branch

Test branch

51

Main branch

Test branch

No Conflict

52

Merge back to main
branch

Main branch

Test branch

With Conflict

53

Main branch

Test branch

With Conflict

54

Main branch

Test branch

With Conflict
Resolve the conflict and merge again

55

Let’s practice with GitHub
Desktop

56

Hands-on demo: https://go.tufts.edu/github2404

https://go.tufts.edu/github2404

6. Best practices for
GitHub Usage

57

DATALAB datalab.tufts.edu

Best practices
• Sync frequently to make your changes available to others. Frequently:

Fetch&pull before making any local changes.
• Small, Frequent Commits.
• Push Regularly: Push your commits
• Branch Strategically: Use branches to manage features, bug fixes, and

experiments separately from the main codebase.
• Communicate Regularly.
• Document Changes: Update README.
• Do not store large files in GitHub. It has limited storage.

58

DATALAB datalab.tufts.edu

Good commit
• Single Focus: Each commit should represent a single

logical change.

• Small Size: Smaller commits are easier to
understand and less likely to introduce complex
merge conflicts.

• Always write good commit message.

59

DATALAB datalab.tufts.edu

Good commit message
• Concise, specific.

• “Add user authentication system”
• Avoid “Update of file.txt”, “Fixed it”

• Detailed explanation including what, why, and how.
• Not too long, not too short. ~50 characters.
• References to related issue or pull requests: “See also

#46”

60

DATALAB datalab.tufts.edu

More about best practices
• https://docs.github.ncsu.edu/github-best-practices/

• https://docs.github.com/en/repositories/creating-and-
managing-repositories/best-practices-for-repositories

• https://github.com/orgs/community/discussions/39082

• https://dangitgit.com/

61

https://docs.github.ncsu.edu/github-best-practices/
https://docs.github.com/en/repositories/creating-and-managing-repositories/best-practices-for-repositories
https://docs.github.com/en/repositories/creating-and-managing-repositories/best-practices-for-repositories
https://github.com/orgs/community/discussions/39082
https://dangitgit.com/

DATALAB datalab.tufts.edu

Recommended tools

62

https://code.visualstudio.com/

https://code.visualstudio.com/

DATALAB datalab.tufts.edu

Popular tools to compare code
differences
• KDiff3: https://kdiff3.sourceforge.net/

• Beyond Compare:
https://www.scootersoftware.com/

• WinMerge: https://winmerge.org/?lang=en

• Code Compare:
https://www.devart.com/codecompare/

63

https://kdiff3.sourceforge.net/
https://www.scootersoftware.com/
https://winmerge.org/?lang=en
https://www.devart.com/codecompare/

DATALAB datalab.tufts.edu

More about .gitignore
• https://git-scm.com/docs/gitignore

• https://www.atlassian.com/git/tutorials/saving-
changes/gitignore

• https://www.youtube.com/watch?v=4a2ZVSzMMq8

64

https://www.atlassian.com/git/tutorials/saving-changes/gitignore
https://www.atlassian.com/git/tutorials/saving-changes/gitignore
https://www.atlassian.com/git/tutorials/saving-changes/gitignore
https://www.youtube.com/watch?v=4a2ZVSzMMq8

DATALAB datalab.tufts.edu

xue.li37@tufts.edu

65

Shirley Li, Bioinformatician, TTS

mailto:xue.li37@tufts.edu

	Slide 1: Download the slides and hands-on tutorial
	Slide 2: Getting started with GitHub & GitHub Desktop
	Slide 3: Content developed by
	Slide 4: Overview
	Slide 5: 1. Data Storage vs. GitHub Repo
	Slide 6: Local folder
	Slide 7: Cloud folder (e.g., Dropbox and Box)
	Slide 8: A local copy of a cloud-based storage
	Slide 9: How changes are tracked
	Slide 10: Conflicts in Cloud Folder
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: 2. Git & GitHub & Version Control Basics
	Slide 19: Final.doc
	Slide 20: Version Control
	Slide 21: What is Git?
	Slide 22: What is GitHub
	Slide 23: .git hidden folder
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Git Commit
	Slide 32: Revert to old version
	Slide 33: Confusions
	Slide 34: Git vs. GitHub Desktop
	Slide 35: 3. Navigating GitHub Desktop
	Slide 36: 4. Resolving Merge Conflicts
	Slide 37: How conflicts are generated
	Slide 38: Conflicts
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Let’s address conflicts using GitHub Desktop
	Slide 43: 5. Understanding Branch Workflow
	Slide 44: Introduction to Branching
	Slide 45
	Slide 46: Branch Workflow Steps
	Slide 47: Best Practices
	Slide 48
	Slide 49: How conflicts are generated when merging branches
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Let’s practice with GitHub Desktop
	Slide 57: 6. Best practices for GitHub Usage
	Slide 58: Best practices
	Slide 59: Good commit
	Slide 60: Good commit message
	Slide 61: More about best practices
	Slide 62: Recommended tools
	Slide 63: Popular tools to compare code differences
	Slide 64: More about .gitignore
	Slide 65: xue.li37@tufts.edu

