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Overview
1. Data storage vs. GitHub Repositories
2. Git & Github & Version Control Basics
3. Navigating GitHub Desktop
4. Resolving Merge Conflicts
5. Understanding Branch Workflow
6. Best Practices for GitHub Usage
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1. Data Storage vs. GitHub 
Repo
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Local folder
• A local folder resides on your computer's hard drive 

or an attached storage device.

• No version control

• Cannot collaborate
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Cloud folder (e.g., Dropbox and Box)

• Stored on servers accessible over the internet, allowing 
files to be accessed from multiple devices and locations.

• Basic version history is available (snapshot)
• Collaboration 
• Synchronization: Files stored in cloud folders can be 

synchronized across all devices linked to the same cloud 
account. Changes made in one device will automatically 
update across all devices, ensuring consistency.
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A local copy of a cloud-based 
storage
• The files stored in a cloud-based storage service 

(like Box, Dropbox, Google Drive, OneDrive, etc.) are 
also downloaded and stored on your own 
computer's hard drive or another storage device.

8



DATALAB datalab.tufts.edu

How changes are tracked
• In a shared folder, who ever made the last changes 

will be saved to cloud, and synced to all local copies. 
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Conflicts in Cloud Folder
• Conflicts in a cloud folder can occur when multiple users 

edit the same file at the same time and the system is 
unable to reconcile the changes automatically.

• Both versions will be saved. We need manually review 
conflict files. 

• Best Practices: Coordinate with team members, agree on 
who will edit what and when.
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Cloud storage

Local copy

You Collaborator

No Conflict
1            2

1            2 1            2
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Cloud storage

Local copy
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Cloud storage

Local copy

You Collaborator

With Conflict
1            2

1            2 1            2
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Cloud storage

Local copy

You Collaborator

With Conflict1 (conflicted copy)

1            2 1            2

1            2
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Cloud storage

Local copy

You Collaborator

With Conflict1 (conflicted copy)

1 (conflicted copy) 1 (conflicted copy)1            2 1            2

1            2
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2. Git & GitHub & Version 
Control Basics
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Final.doc
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Version Control 
• Version control is a record of who make changes to 

what, and when they did it 

• We can always undo

• Easier for collaboration without overwriting

• A key skill in code&data management!
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What is Git?
• A version control system.
• Manage source code changes.
• Two key features: Commit and Branches. 
• With Git, you can easily roll back to older code snapshots 

(commits) or develop new features without breaking 
production code. 
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What is GitHub
• A cloud Git repository & services provider.
• Code management & collaborative development.
• It can handle all the versioning and allows multiple people 

to collaborate on the same project.
• Repositories support version control capabilities through 

Git.
• Graphical User Interface, beginner friendly
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.git hidden folder
• .git folder is created after you initiate a repository

• .git contains all information required for version 
control.
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.git

GitHub
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a central hub for stored code, allowing 
team members to push and pull changes
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.git

git clone

.git

remote

local
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.git

.git

remote

local

Make changes locally 27
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.git

git commit

remote

local
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.git

.git

git push

remote

local
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.git

.git

Git fetch & Pull

local 
(collaborator) 

remote
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Git Commit
• A core function in the Git version control system that saves a 

snapshot of the project’s staged changes, creating a 
"commit" object in the repository history. 

• Each commit includes:
• Snapshot of Changes
• Unique Identifier
• Author Information
• Timestamp
• Commit Message
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Commit 1:
Create file.txt

Commit 2:
Delete file.txt

• How to recover file.txt?
Commit 1:

Create file.txt
Commit 2:

Delete file.txt
Commit 3:

Revert “Delete file.txt”

A new commit

32
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Confusions
• Pull is a command for updating the local repository to 

match a remote repository.
• Push is a command for updating a remote repository 

with changes made locally.
• Pull Request is a feature allows you to tell others about 

changes you've pushed to a branch in a repository. 
(Usage: Merge other branches to main branch; 
Contribute to open source project.)
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Git vs. GitHub Desktop
• Git: a command line tool

•  Git provides more detailed control over all aspects of 
version control, suitable for complex development 
workflows.

• GitHub Desktop: a graphical user interface (GUI)
• GitHub Desktop focuses on simplifying common Git 

operations, which may limit some advanced functions.
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3. Navigating GitHub 
Desktop
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Hands-on demo: https://go.tufts.edu/github2404
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4. Resolving Merge 
Conflicts
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How conflicts are generated
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Conflicts
• In services like Box or Dropbox, conflicts arise when 

two team members simultaneously make changes 
to the same file. 

• Similarly, in a GitHub repository, conflicts occur 
when two team members modify the same part of a 
file concurrently.
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.git

.git

remote

local

39



.git

.git

remote

local

You make changes locally

Your collaborator make changes remotely 
or they make changes on their local copy 
and commit and push back to GitHub. 
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Commit and push will 
cause conflicts 41



Let’s address conflicts using 
GitHub Desktop
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5. Understanding Branch 
Workflow
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Introduction to Branching
• Definition: A branch in version control is a separate line of 

development that diverges from the main line (often called "master" 
or "main").

• Purpose: Allows developers to work simultaneously on different 
features or fixes without disturbing the stable version of the project.

• Isolation: Changes in one branch don't affect others, making it safer 
to experiment.

• Collaboration: Multiple people can work on different features 
simultaneously without interference.
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Main
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Branch Workflow Steps
1. Create a Branch

2. Add Commits

3. Open a Pull Request

4. Review and Merge

5. Delete the Branch
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Best Practices 
• Keep Branches Short-Lived

• Regularly Sync with Main Branch
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How conflicts are generated 
when merging branches
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Main branch

Test branch
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Main branch

Test branch
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Main branch

Test branch

No Conflict

52

Merge back to main 
branch



Main branch

Test branch

With Conflict
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Main branch

Test branch

With Conflict
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Main branch

Test branch

With Conflict
Resolve the conflict and merge again
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Let’s practice with GitHub 
Desktop
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Hands-on demo: https://go.tufts.edu/github2404

https://go.tufts.edu/github2404


6. Best practices for 
GitHub Usage
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Best practices
• Sync frequently to make your changes available to others. Frequently: 

Fetch&pull before making any local changes. 
• Small, Frequent Commits.
• Push Regularly: Push your commits 
• Branch Strategically: Use branches to manage features, bug fixes, and 

experiments separately from the main codebase. 
• Communicate Regularly.
• Document Changes: Update README. 
• Do not store large files in GitHub. It has limited storage. 
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Good commit
• Single Focus: Each commit should represent a single 

logical change. 

• Small Size: Smaller commits are easier to 
understand and less likely to introduce complex 
merge conflicts. 

• Always write good commit message. 
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Good commit message
• Concise, specific.

• “Add user authentication system”
• Avoid “Update of file.txt”, “Fixed it”

• Detailed explanation including what, why, and how. 
• Not too long, not too short. ~50 characters. 
• References to related issue or pull requests: “See also 

#46”
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More about best practices
• https://docs.github.ncsu.edu/github-best-practices/ 

• https://docs.github.com/en/repositories/creating-and-
managing-repositories/best-practices-for-repositories

• https://github.com/orgs/community/discussions/39082 

• https://dangitgit.com/ 
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Recommended tools

62

https://code.visualstudio.com/ 

https://code.visualstudio.com/


DATALAB datalab.tufts.edu

Popular tools to compare code 
differences
• KDiff3: https://kdiff3.sourceforge.net/ 

• Beyond Compare: 
https://www.scootersoftware.com/ 

• WinMerge: https://winmerge.org/?lang=en   

• Code Compare: 
https://www.devart.com/codecompare/ 
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More about .gitignore
• https://git-scm.com/docs/gitignore

• https://www.atlassian.com/git/tutorials/saving-
changes/gitignore 

• https://www.youtube.com/watch?v=4a2ZVSzMMq8 
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xue.li37@tufts.edu 
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