
Intro to GitHub & GitHub Desktop
-- Tytell Lab GitHub Training

Date: 2024-04-25

Author: Shirley Xue Li, Bioinformatician, TTS Research Technology, Tufts University
Email: xue.li37@tufts.edu
Research Technology Contact: tts-research@tufts.edu

Intro to GitHub & GitHub Desktop
1. Set up GitHub Desktop
2. Get started with GitHub Desktop

2.1 Create a new repository and publish it.
2.2 Making, commiting, and pushing changes.
2.3 Fetching, and pulling changes from remote repo to local repo.

3. Restore a previous version
4. Addressing conflicts between local and remote.

4.1 Intentionally create a conflict.
4.2 Resolve the conflict.

5. Addressing conflicts between main and other branch
5.1 Intentionally create a conflict.
5.2 Resolve conflict.

1. Set up GitHub Desktop

mailto:xue.li37@tufts.edu
mailto:tts-research@tufts.edu

1. Set up GitHub Desktop
GitHub Desktop can be downloaded HERE.

To create a GitHub Account, following instructions HERE.

To set up GitHub Desktop, follow instructions HERE.

2. Get started with GitHub Desktop
2.1 Create a new repository and publish it.

1. Under File , select New repository , then fill in the information, and hit create repository . Remember
to change Local Path to your own path

2. In the repository bar, click Publish repository . Check your GitHub website, you will see this new repo
under your Repositories.

3. Navigate to GitHub website to check your new repository.

https://desktop.github.com/
https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://docs.github.com/en/desktop/installing-and-authenticating-to-github-desktop/setting-up-github-desktop

3. Navigate to GitHub website to check your new repository.

2.2 Making, commiting, and pushing changes.
1. Click Show in Finder folder, this will be the local folder of your GitHub Repo.

2. For Mac users, Command + Shift + . to show hidden files. You will see .git folder which contains stores
all the metadata and object database for that project.

3. Command + Shift + . to hide hidden files.

4. Make changes to your local repo. Ex: Create a new file called file.txt .

5. In GitHub Desktop, navigate to the Changes view. In the file list, you should see your file.txt. The checkbox

5. In GitHub Desktop, navigate to the Changes view. In the file list, you should see your file.txt. The checkbox
to the left of the file.txt file indicates that the changes you've made to the file will be part of the commit
you make. In the future, you might make changes to multiple files but only want to commit the changes
you've made to some of the files. If you click the checkbox next to a file, that file will not be included in the
commit.

6. You can write the commit message in commit message , click Commit to main . Ex: we can write commit
message as 'Create file.txt'.

7. To push your changes to the remote repository on GitHub, click Push origin.

8. In your browser, check the changes to the remote repo.

2.3 Fetching, and pulling changes from remote repo to local
repo.

1. In your brower, make some edits to file.txt. Ex: Add Hello World as first line and then commit changes .

2. Fetch origin to check the changes in remote repo. This will only check the changes made in origin, and
your local repo won't be overwritten.

3. Pull origin to pull the changes and update the local repo. Your local repo will be overwritten.

4. You can see your file.txt has been updated.

4. You can see your file.txt has been updated.

3. Restore a previous version
Under the History section, you can revert a commit by clicking on Revert Changes in Commit . This action will
generate a new commit that restores the project to its former version. With GitHub Desktop, reverting is limited
to the most recent commit only. When you revert multiple commits, it's best to revert in order from newest to
oldest. If you revert commits in a different order, you may see merge conflicts.

⚠

 Always write clear and detailed commit messages! This practice will enable quicker
identification of previous versions for potential reverts.

4. Addressing conflicts between local and
remote.

4.1 Intentionally create a conflict.
In your browser, edit file.txt. Ex: Add Hello Medford as second line and then commit changes .

Locally, edit file.txt. Ex: Add Hello Boston as second line, and then Commit to main .

Locally, edit file.txt. Ex: Add Hello Boston as second line, and then Commit to main .

After you Commit to main , under Pull origin in repository bar, you can see one up arrow and one
down arrow. This means that you are one step behind remote repo (Adding Hello Medford as second
line), but at the same time one step ahead remote repo (Adding Hello Boston as second line).

When you Pull origin , you will see conflict warning.

When you Pull origin , you will see conflict warning.

An explanation of file.txt with conflict.

<<<<<<< HEAD: Everything between this line and the ======= line are your changes—the content
from local repo where you're trying to push into remote.

After the ======= line, the content up until >>>>>>> represents the incoming changes from remote
repo that you are trying to push to.

4.2 Resolve the conflict.
Click View conflicts and right click the down arrow in the new window.

There are two simple options, Use the modified file from main and Use the modified file from
origin/main .

main represents local repo main branch

origin/main represents remote repo main branch.

There is also a third option, when you don't like the version in local repo and the version in remote repo.
You can edit the file.txt again to make new changes.

Ex: Let's change the file content, so the first line is still Hello World , but the second line is Hello
Tufts .

You can commit and push again. This new commit will overright the previous commits made locally and
globally.

Check the file.txt in your browser, you can now see something like below.

5. Addressing conflicts between main and

5. Addressing conflicts between main and
other branch

5.1 Intentionally create a conflict.
Create a test branch with name test , then publish the branch.

In test branch, edit file.txt. Ex: Add Hello Dog as the third line, then Commit to test , then Push orgin .

Switch back to main branch, edit file.txt. Ex: Add Hello Cat as the third line, then Commit to main , then
Push orgin .

Switch back to test branch again.

Under menu bar Branch , click compare to branch , then select main branch to compare with.

Under Changes, you will see Behind(1) and Ahead(1) , which means local branch is one step behind
main branch, because it doesn't add line Hello Cat , and at the same time, it is one step ahead main
branch, because it adds line Hello Dog which main branch doesn't have.

In your browser, you can still create a pull request to merge test branch to main branch. But you will see
conflict warning.

5.2 Resolve conflict.
In your browser, check the conflicts and create a new commit under test branch.

Merge again.

Check the two branches, you will see the file.txt is the version after you made the new commit to test
branch.

	Intro to GitHub & GitHub Desktop
	1. Set up GitHub Desktop
	2. Get started with GitHub Desktop
	2.1 Create a new repository and publish it.
	2.2 Making, commiting, and pushing changes.
	2.3 Fetching, and pulling changes from remote repo to local repo.

	3. Restore a previous version
	4. Addressing conflicts between local and remote.
	4.1 Intentionally create a conflict.
	4.2 Resolve the conflict.

	5. Addressing conflicts between main and other branch
	5.1 Intentionally create a conflict.
	5.2 Resolve conflict.

